http://www.webcivil.com/CTBfea.aspx

wabaivil			Gener	al Functions				<u>home</u> <u>Canadia</u>
	echanics			ols Links	d Beams (FE/	4.) User Manu		
spans			Section	Tilli-walle		Review Report	Supports at Ends	
i= <u>1 v</u>	S _i = 3800	mm d _i = <u>31</u>] mm b	i = 254 mm	Metric	O Imperial	Left Pin	Right Pin 💌
t _i = 19 mm	vv _i = 8		idate 🗸	Edit	Input	UnLock	Loading i= 1 v	#ofSpan 1
i S _i (mm) 1 5000	d _i (mm) 310	b _i (mm) 254	t _i (mm) 19	w _i (mm) 9	General Information E = 200000 MPa	X = 3800 mm	Type Point V	$T_q = -12$ k
					u = 0.3	Shape W	x _b = 500 mm	Edit
10 * w=9	t=19	<u>ج</u>			4000			
		<	2000		->		5.0 KNm	
L	5	2	5.000280552e		10.0 kNm			8
b=254					5000			

Beam Input

Features

This software is for torsional analysis of open section thin-walled beams with finite element method

Considering spans, heights of beams, and loading locations, the software meshes beams to elements automatically

Provide results of twist angle, twist rate

Provide results of pure shear stress, warping shear stress, warping normal stress at specified location

Notes

Units: torque and moment kN.m (in. kips), <u>Bi-moment</u>: kN.m² (in.². kips)

Torque direction: with right hand rule, counter-clockwise is positive

References

Thin-Walled Elastic Beams, 2nd Edtion, Vlasov V. Z. Jerusalem: Israel Program for Scientific Translations, 1961

Finite Element Procedures, Bathe K. J. Prentice Hall

Structural Analysis for Thin-Walled Members, 4th Edition, *Shihua Bao, Jian Zhou*, China Architecture & Building Press

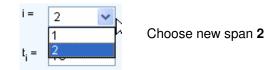
American Institute of Steel Construction (AISC) Design Guide 9, Torsional Analysis of Structure Steel Members

Salmon C. G., Johnson J. E. Steel Structures : Design and Behavior, 4th Edition, Prentice Hall, NJ

Instruction

1. General

Gen	eral Information	1				
E ₀ =	200000 MPa	X = 3800	mm			
u =	0.3	Shape W	~			
u	 Modulus of elas Poisson ratio Location from le After clicking bu Shape C W C Z 				n get the updated r	results
Suppor Left	ts at Ends Pin 🗸	Right Pin	~			
For torsic	onal pin support:	ree", "pin", and "fi no rotation,torsion fi no rotation,torsion fix	xed, warp	ing free		
💽 Me	etric	🔘 Imperial				
All inputs	can be transferre	d to other unit auton	natically			


2. Input of Spans

Span	IS				
i =	1 💌	S _i = 3800	mm d _i = 310) mm b _i	= 254 mm
t _i =	19 mm	w _i = 8	mm Add	d 🗸	Edit
i	S _i (mm)	d _i (mm)	b _i (mm)	t _i (mm)	w _i (mm)
1	5000	310	254	19	9

Add One Span

*
1
Ň

Select Add from the list

Input S_i, d_i, b_i, t_i, w_i as required

click button Edit, you can add new span 2

Delete One Span

Spar	IS				
i =	1 💙				
				Add 💌	Edit
				Delete 📐	
i	S _i	d _i		Update 1	w
	(mm)	(mm)	(mm)	(mm)	(mm)
1	5000	310	254	19	9

Select Delete from the list

Click button **Edit**, you can delete span 2, You couldn't delete span 1, but you can update input for span 1

Update One Span

Span	IS				
i =	1 💌	S _i = 5000	mm d _i = 310) mm k	p _i = 254 mm
t _i =	19 mm	w _i = 9	mm Up Add Del		Edit
i	S _i	d _i (mm)		date (mm)	W _i
1	(mm) 3800	(mm) 310	(mm) 254	19	(mm) 8
2	5000	310	254	19	9

Select **Update** from the list

Input S_i, d_i, b_i, t_i, w_i as required

click button Edit, you can update input for span 1

3. Input of Loading

Add One Load

Loadin	9		
i =	3 🗸	# of Span	2 💌
Туре	Point 💌	T _q =	-12 kN.m
× _b =	500	mm	
	Add	~	Edit
	\dd	- K	
)elete Jpdate		

Select Add from the list

i = [3 🗸	Choose loading) number as 3	
# of Span	2 🗸	set loading or	ı span 2	
Туре	Uniforn 🗸 Point	T _q =	-12	kN.m/m
× _b =	Uniform	mm × _d =	1000	mm

Select loading as Uniform

Input $T_q, \, x_b, \, x_d$ as required

Click button Edit, you can add one load

Delete One Load

Loading		
i = 2	*	
Delete	*	Edit
Add		
Delete Update	2	

Select **Delete** from the list

i = 2 v choose loading number of 2

click button Edit, you can delete loading number of 2

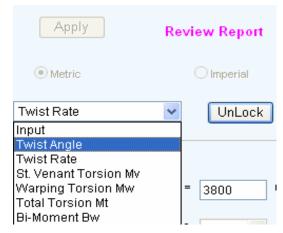
You couldn't delete loading number of 1, but you can update input for loading number of 1

Update One Load

Loading		
i = 1	/ # of Span	2 💌
Type Point	T _q =	5 kN.m/m
× _b = 4000	mm	
Add	*	Edit
Add Delete		
Update		

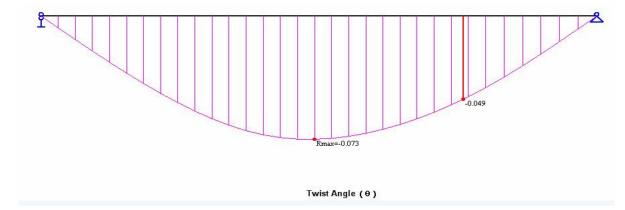
Select Update from the list

¥


Choose loading number of 1

You can change information for # of span, Loading Type, T_q , x_b , x_d as required Click button **Edit**, you can update input for the selected load

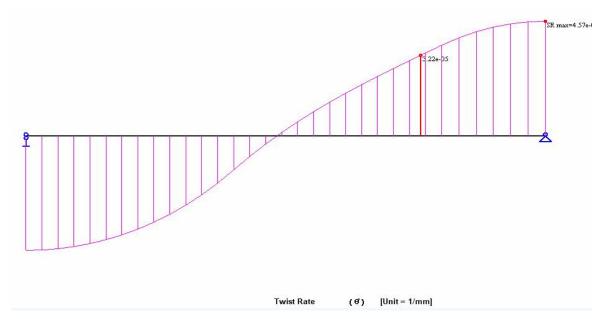
4. Review Results


Click botton Apply

Result for Twist Angle (θ)

Select Twist Angle from the list

you can get envelope for rotation as following

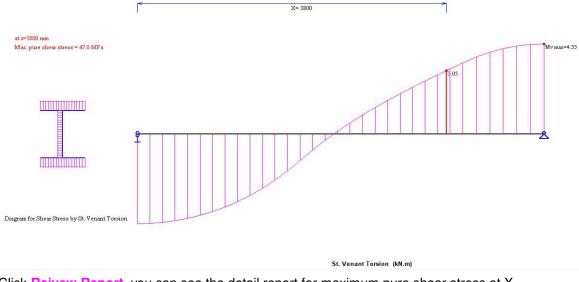


Result for Twist Rate (θ')

Apply	Review Report
Metric	OImperial
Twist Angle	VnLock
Input Twist Angle	
Twist Rate	
St. Venant Torsion Mv	
Warping Torsion Mw	= 3800
Total Torsion Mt	
Bi-Moment Bw	

Select Twist Rate from the list

you can get envelope for slope of rotation as following

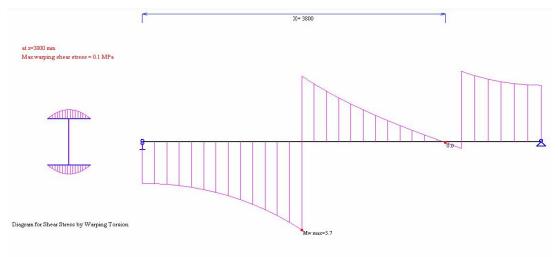


Result for St. Venant Torsion Mv

Apply	Review Report
Metric	OImperial
Twist Angle	UnLock
Input Twist Angle Twist Rate	
St. Venant Torsion Mv Warping Torsion Mw Total Torsion Mt Bi-Moment Bw	= 3800 '

Select St. Venant Torsion Mv from the list

you can get envelope for St. Venant torsion and diagram for pure shear stress at location X

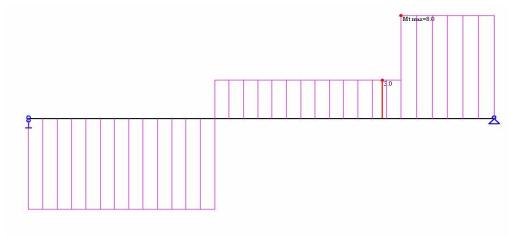

Click Reivew Report, you can see the detail report for maximum pure shear stress at X

Result for Warping Torsion Mw

Apply	Review Report		
 Metric 	O Imperial		
Warping Torsion Mw	UnLock		
Input Twist Angle Twist Rate St. Venant Torsion Mv			
Warping Torsion Mw Total Torsion Mt Bi-Moment Bw	= 3800		

Select Warping Torsion Mw from the list

you can get envelope for warping torsion and diagram for warping shear stress at location X


Warping Torsion Mw (kN.m)

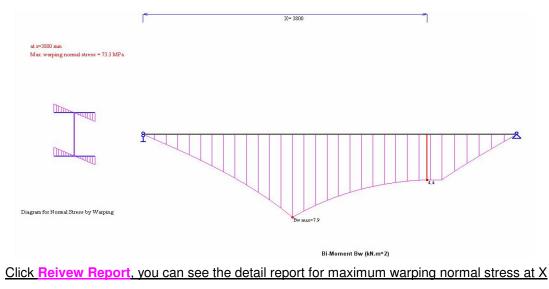
Click Reivew Report, you can see the detail report for maximum warping shear stress at X

Result for Total Torsion Mt

	Apply	eview Report				
	 Metric 	(Imperial			
	Warping Torsion Mw 🛛 😽		UnLock			
	Input	1				
	Twist Angle					
	Twist Rate					
	St. Venant Torsion Mv					
	Warping Torsion Mw	=	3800			
	Total Torsion Mt					
	Bi-Moment Bw					
et Total Torsion Mt from the list						

Select **Total Torsion Mt** from the list you can get envelope for total torsion

Total Torsion Mt (kN.m)


This torsion will apply for beam end connection design

Result for Bi-Moment Bw

Select Bi-Moment Bw from the list

you can get envelope for bi-moment and diagram for warping normal stress at location X

click button UnLock, results are discarded, go back to input page

Theory for Torsional Analysis of Open Section Thin-Walled Members

Element Torsional Stiffness Matrix

$$\left(\begin{array}{c} M_{ti} \\ B_{\omega i} \\ M_{tj} \\ B_{\omega j} \end{array} \right) \quad .= \left(\begin{array}{cccc} 2 \, i_\omega \, \gamma \, /L^2 & 2 \, i_\omega \, (\alpha + \beta)/L & -2 \, i_\omega \, \gamma \, /L^2 & 2 \, i_\omega \, (\alpha + \beta)/L \\ 2 \, i_\omega \, (\alpha + \beta)/L & 2 \, i_\omega \, \alpha & -2 \, i_\omega \, (\alpha + \beta)/L & 2 \, i_\omega \, \beta \\ -2 \, i_\omega \, \gamma \, /L^2 & -2 \, i_\omega \, (\alpha + \beta)/L & 2 \, i_\omega \, \gamma \, /L^2 & -2 \, i_\omega \, (\alpha + \beta)/L \\ 2 \, i_\omega \, (\alpha + \beta)/L & 2 \, i_\omega \, \beta & -2 \, i_\omega \, (\alpha + \beta)/L & 2 \, i_\omega \, \alpha \end{array} \right) \left(\begin{array}{c} \theta_i \\ \theta_i' \\ \theta_j \\ \theta_j \end{array} \right)$$

M_{ti}, M_{tj}	=	Total torsion at points i and j	$M_t = M_v + M_\omega$
M _v	=	St. Venant (pure) torsion	
M_ω	=	Warping torsion	
$B_{\omega i},B_{\omega j}$	=	Bi-moment at points i and j	

$\theta_i, \; \theta_j$	=	Twist angle at points i and j	

 $\dot{\theta_{i}}, \dot{\theta_{j}} = T$ wist rate (or first derivative of twist angle) at points i and j

$$\begin{split} i_{\omega} &= \mathsf{E}_{0} \,.\, J_{\omega} \,/\, \mathsf{L} \\ \alpha &= \kappa. \left(\kappa - \mathsf{th}\kappa \right) / \left\{ 2 \, \mathsf{th}\kappa \,.\, \left[\kappa - 2 \, \mathsf{th}(\kappa/2) \right] \right\} \\ \beta &= \kappa \left(\mathsf{sh}\kappa - \kappa \right) / \left\{ 2 \, \mathsf{sh}\kappa \,.\, \left[\kappa - 2 \, \mathsf{th}(\kappa/2) \right] \right\} \\ \alpha &+ \beta &= \kappa^{2} \,. \mathsf{th}(\kappa/2) \,/ \left\{ 2 \left[\kappa - 2 \, \mathsf{th}(\kappa/2) \right] \right\} \\ \gamma &= \kappa^{3} \,/ \left\{ 2 \left[\kappa - 2 \, \mathsf{th}(\kappa/2) \right] \right\} \end{split}$$

		$\kappa = \left[\begin{array}{c} G \; J_{d} \; L^2 \; / \; (E_1 \; . \; J_{\omega}) \right]^{0.5}$	$E_1 = E_0 / (1 - u^2)$	$G = E_0 / [2(1 + u)]$
J _d J _ω	=	St. Venant torsional constant Warping torsional constant		
		$M_v = G. \ J_d. \ \theta'$		
		$M_{\omega} = M_t - M_v$		
Pure torsional shear stress		$\tau = M_v \ .t \ / \ J_d$		
Warping shear stress		$\tau = M_{\omega} \ .S_{\omega} \ / \ (J_{\omega} \ . \ t)$		
Warping normal stress		$\sigma = B_{\omega} \; \omega \; / \; J_{\omega}$		
		for $\omega(\mbox{sectorial area})$ and $S_{\omega}(\mbox{sectorial area})$	ctorial moment), see d	etail report

www.webcivil.com

Setford Consulting & Technology Ltd

2014.5